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ABSTRACT -- We have analyzed cortical and subcortical field
recordings from spatially distinct neural circuits in order to
support the hypothesis that spatially distinct brain locations display
correlated ictal activity during epileptic seizures. Field recordings
have been obtained from cortex (CTX), anterior thalamic nuclei
(AN), posterior thalamus (PT) and hippocampus (HPC) during
pentylenetetrazol (PTZ) seizures in anesthetized animals. We use
Wavelet Transform CrossCorrelation (WTCC) method in order to
quantify the common activity between two recordings at particular
bands of interest. In contrary to Fourier Transform Coherence
(FTC), we show that WTCC provides a more reliable estimate of
band-spedfic common activity or crosscoherence between two
epil eptic sources. Although most of the signal power is located at
higher frequencies (15-30H2), resultsfrom WTCC reveal significant
mean crosscorrelation estimates (~0.7-0.8) at primarily the lower
regions of the spedrum (0-10H2). The behavior observed in the
brain recordings analyzed in this paper letsusdifferentiate between
local and global behavior, where the global behavior is assumed to
be due to a pacemaker function which is a quasi-periodic train of
impulse functions that differentially excites various areas of the
brain.

Index Terms— Crosscorrelation analysis, epil epsy, propagation,
wavelet analysis
l. INTRODUCTION

The studies of the network medanisms of epil epsy over the
last several decades has focused largely on the ceebral cortex,
the hippocampus and the thalamus. The ceebral cortex and
hippocampus have a natural inclination to generating large,
synchronized bursts of activity underlying many forms of
seizures due to strong reaurrent excitatory connedions, the
presence of intrinsically burst-generating neurons, interactions
among closely spaced neurons and synaptic plasticity [1]. The
thalamus also plays a significant role in the potentiation of
seizures[2].

Although the predse epil eptic pathways underlying epil eptic
seizure activity remain largely unknown, some strong neura
pathway evidence for a unique thalamocortical pathway is
present. Through |esioning, autoradiographic, pharmacol ogic and
eledrical stimulation studies, Mirski et d. have discovered that
the mammillothalamic tract and its associated nuclel spedfically
the anterior thalamus (AN) provide a propagation pathway
during pentylenetetrazol (PTZ)-induced seizure activity. In
addition to the physiological evidence there have been varied
uses of signal coherence in EEG studies for identification of
affili ated brain centers during the seizure activity [3,4]. Sherman
at al., using partial cohererce estimation techniques, have shown
significant coherence results between EEG signals recorded
from AN and CTX. Both ordinary and partial coherence
measures based upon the periodogram show statistical evidence
in favor of astrong AN-CTX assciation [5].

In this gudy, we provide a different approach to confirm the
interactions between spatially distinct brain centers and to be
able to make the assumption of a globally propagating signal

considered to be the underlying mechanism of the eoil eptiform
activity observed at each brain recrding. Our approach relies on
coherence analysis using wavel etsto verify that the brain centers
where the field recordings are made have wrrelated and/or time-
locked activity in accordance with the model shown in Fig. 1.
Since our crosscoherence etimation method is based on
wavelets, first we attempt to provide reasons for our choice of
wavelets as opposed to Fourier transform by demonstrating the
contrast between the adosscoherence etimation of two methods
on real EEG data. Continuous Wavedet Transform (CWT), being
alarge set of band-passfilters, will alow usto focus on thetime-
locked components in order to establish a reliable aoss
coherence etimation of two brain signals.
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Figure 1. A systematic view of ictal discharge propagation mecdianism. The
pacemaker sgnal sequentially activates gatialy distinct neural circuits. Each
circuit produces characteristic impulse resporse in the field rewrding. The
physiological properties and the airrent activity state of the underlying tissie
determines the impulse morphdogy.
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Il. METHODS

The wavelet transform is asignificant advancement in time-
frequency analysis of signals suich as EEG. It has certain
advantages over Fourier transform techniques, since it does not
require use of an infinite data window in deali ng with sinusoids.
Windowing is an important issue when dealing with signals
similar to EEG that contain features that differ significantly in
duration and frequency content over time.

There are reasons now to rely on wavelets for the estimation
of crosscoherence acrosstwo brain centers. Here, we would like
to define the aosscoherence between two signals as the band-
spedfic aosscorrelation. That is, by spedfic averaging in the
frequency domain, we etimate the adosscorrelation of spedfic
range of oscillations. The proposed crosscoherence estimation
approach is based on the assumption that two interacting brain
centers display non-sinusoidal oscill ations, e.g. time-locali zed
spikes and waves. Superimposing  spike-wave signal
morphology on sinusoids, asin Fourier Transform, will unlikey
refled the actual frequency content, and therefore, the
periodogram technique would not be a feasible alternative for
crosscoherence etimation of brain recordings. On the other
hand, the CWT all ows usto enhance spedfic band of frequercies
using signal reanstruction while achieving goad time resolution
in order to compute band-spedfic aosscorrelation [6].



Report Documentation Page

Report Date Report Type
250CT2001 N/A

Dates Covered (from... to)

Title and Subtitle
Cross-Correlation Analysis of Epileptiform Propagation Using
Wavelets

Contract Number

Grant Number

Program Element Number

Author (s)

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Addr ess(es)
Department of Biomedical Engineering The Johns Hopkins
School of Medicine, Johns Hopkins University Baltimore, MD
21205

Performing Organization Report Number

Sponsoring/M onitoring Agency Name(s) and Addr ess(es)
US Army Research Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Papers from the 23rd Annua International Conference of the IEEE Engineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on CD-ROM.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
uu

Number of Pages
4




A. Wavelet Analysis
We define the i™ band reconstructed signal defined in the
continuous wavelet transform domain scale interva

(2i +1 _ 2i ) as,
s2" CWT, (1)

Hi () = _Z S

s=2
This is equivalent to dyadic decomposition of the function
f(t) OL,(O)intoatotal of N bands. The traditional frequency

bands of interest in EEGs are shown in Table 1.

fori=0,12 .N @

B. Cross Wavelet Transform

Wavelet transform of time domain crosscorrelation of two

signals is equivalent to crosscorrelation of the waveet
transform of each signals.
_ _1 * s T—b dsd
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Rather than computing crosscorrelation functions in the
CWT plane at every scale, we would like to perform a dyadic
averaging of frequencies or signal remnstruction as in (1) and
compute aosscorrelations acrossthe remnstructed signals from
different sources. Then, at a particular band i, the aoss

correlation function of two signals f and gis,
. 1 *
Rj (i) = —fO;(r)0j (r +d)dr )]
Cc

where d isthelag range.

The improved crosscorrelation estimation can be attributed
to the fact that wavelet transform with an appropriate scale @n
be mnsidered an approximation of matched filtering, which
extracts the deterministic signal and filters out noise and
interference The observed quasi-periodicity in therecorded brain
signals glits this <enario very wdl. wavelet scales
corresponding to consistent signal morphologies will enhance
them in the @ntinuouswavelet transform domain. By separating
the signal into distinct bands of frequencies, we hope to increase
the signal to noise ratio at particular bands to differentiate
consistent signals from random fluctuations.

C. Cross Wavelet Coherence
At this moment, the i,band timevarying wavelet

coherence, C; 4 (t), of f(t)and g(t) is

mad L (0 (t+0)0, (7 +d)D
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Assean in the eyuation, aslidingwindow of length 2At ([-.4 <
d < .4] seg isapplied throughout the signal period being
analyzed.

TABLE |. The traditional frequency
Wave | Frequenc | Band bands are often spedfied as & (lessthan 4
Numb | y Range Symbo
er | Hz), 6 (4-7 Hz), o (7-15Hz2), B (1531
3 04 Hz 3 Hz), and y activity (above 31 Hz). There
is much physologcal and satigtical
7 47Hz 6 evidence for the independence of several
6 7-15 a of these bands, but their boundaries can
5 16-31 B vary to some etent acocording to the
2 3163 particular experiment being considered
Y andthey can be adjusted as required.
3 64-127 NA
2 128255 NA

Finally, we ned to indicate the reasons of obtaining atime-
varying coherence function and how we perform this operation.
It is unreasonable to exped the same physiological behavior of
the seizure activity to last for a long time. During an ictal
discharge gpoch lasting 8-10 secs, the dynamic behavior of the
epil eptic neural circuits may changein seands|[7]. Based on this
asuimption, we have developed an interest in a correlation
function that would actuall y expressthe activity level of a seizure
pathway conneding two brain structures at a chosen interval of
time. For this purpose, we have applied a moving- average (MA)
window to the CWT-remnstructed signals. The aosscoherence
estimation inside each dliding window corresponds to one point
in the crrelation function of time. The sampling rate is 1000Hz
at each channel and the MA window is square and 800 points or
0.8 seclong. The window dliding speed is 50 points.

For the demonstration of the mntrast between FFT and
CWT coherence we have used averaging windows of length 800
points in analyzing ictal discharge recrdings of 4000 mints
long. The matlab ‘cohere’ function with Hamming analysis
window of 256 mints long and with diding velocity of 50 points
isused to estimate aosscoherenceinsde the averaging window.
Then, frequency averaging is done to represent crosscoherence
based on the frequency ranges sown in Table 1. Similar to
wavelets, we oltain a time-varying crosscoherence function
where each averaging window corresponds to a single point in
the FFT-based crosscoherence function of time. Square
averaging window of 800 mints is used for wavelet coherence
We would like to note here that temporal resolution is achieved
with the same analysis window in FFT. In wavedets, temporal
resolution is already achieved by the spedfic morphology of the
scali ng function.

D. Experimental Setup

Male Sprague-Dawley rats (N=2) purchased from Charles
River, Wilmington, MA, weighing 250300 gwere anesthetized
with halogen/oxygen and placed on a stereotaxic frame. All three
animals had EEG rewmrded from AN and PT nucleé and
transcortical sites. These animals had additi onal depth-eledrodes
placed in hippocampus. Two epidural eledrodes were placed
behind bregma. Depth dedrodes were implanted as foll ows:
AN-1.5-mm posterior to bregma (AP), 1.5 mm latera to midline
(L) and 6.0 mm ventral to cortical surface (D); PT-4.3-mm AP,
1.5-mm L and 6.0-mm D; hippocampus-4.5-mm AP, 4.0-mm L
and 26-mm D. Durelon liquid due and powder were used to
hold eledrodes and peckstal in place

On the day of primary surgery, CTX screw el edrodes were
implanted under anesthesia. After an induction period of 2.5%
halothane AN, PT and HPC twisted pair eledrodes are implanted



at their respedive locations. Dental cement is used to seare
animals. The animals were al owed to remver for a minimal of
two days. On the day of experiment, animal was placed under
halothane and paralyzed with pancurouium. Blood pressure was
monitored through a femora artery and ECG was monitored.
PTZ administered at a rate of 5.5 mg/kg/min after a 15min
basdline EEG remrding. Data was sampled at 100(Hz &ter being
analog filtered to 300Hz.

. RESULTS

In this ®dion, we first demonstrate that our WTCC is a
consistent method, as opposed to FFT, in measuring the
common or coherent activity between two brain recordings.
Having developed the WTCC method in the methodology
sedion, we will present the results from the application of this
method to cortical and subcortical field recordings.

Shown in Fig. 2. is a single goch of the recrded field
potentials from cortex, hippocampus, anterior thalamic nucle
and posterior thalamus. The recording is 16 semnds long for
each channel and ictal discharges dart at around 3 seconds and
terminate at around 14 seconds.

A. Wavelet vs. FFT Smulation Results

A signa corrdated to itsdf must produce the maximum
autocorrelation value of 1 at all frequency bands under any
analyzing windows of any length. We have mpared
periodogram coherence and wave et coherence by computing the
coherence of the AN signal with itsdf after addition of
uncorrelated noise. Our results confirm that degradation of
correlation value with periodogram coherenceestimation is much
more dramatic than WTCC under different noise amplitudes.
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Figure 2. 4 channd EEG and depth recordings from cortex, hippacampus,
anterior thalamic nucle and paterior thalamus during the PTZ-induced seizure.
Seizure dtarts at around 3 secs and ends at around 14 secs. Amplitudes at all
channelsare normali zed so that each hasa meximum amplitude of 1.

The simulation of time-varying coherence with addition of
uncorrelated noise @n be stated as below,

fAN1 = fAN +nl
fANz = fAN +n2 (7)
Crr iy )<L ifN,#0&n, #0

Table 2. Wavelet auto-coherence estimation vs.
FFT

SNR 00 1 05 o1
0-4Hz Waveets | 1 092 | 0.85 | 0.65
FFT 1 093 | 084 [ 0.10
4-7THz Waveets | 1 0.99 | 096 | 0.68
FFT 1 095 | 0.86 | 0.15
7-15Hz Waveets | 1 0.99 | 097 [ 064
FFT 1 095 | 085 | 0.17
16-31Hz Waveets | 1 093 | 0.82 | 043
FFT 1 089 | 071 | 0.08
32-63Hz Waveets | 1 0.89 | 074 | 032
FFT 1 0.65 | 0.37 | 0.08

The results of the AN auto-coherence test under different
noise power confirm that WTCC is more immune to noise than
FTC. (seeTable 2).

B. WTCC Results

Having confirmed the strength of WTCC over FTC in
analyzing crosscoherence between EEG data, we have estimated
crosscoherence across different brain centers via WTCC. The
results show that there is a distinguishable cohererte increase
at al pairs of channels or pathways during the transition from
interictal to ictal period (0.2-0.4's (data not shown) during
interictal period to 0.8-0.9sduring theictal period (seetablelll).

In Fig. 3, we show the results from wavelet power
estimation that gives us an idea aout the distribution of signal
power over arange of frequencies at each channd. Significant
signal power islocated at 16-31 frequency range for all channels.
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Figure 3. Power distribution of diff erent channels over diff erent frequencgy
intervalsduring seizureictal discharge activity. 16-31 Hz range contains the
most power in all channels.

In Table 3. we show mean crosscoherence vaues for
different range of frequencies during ictal period. Although the
16-31 Hz frequency range ntains most of the power at all
channds, significant crosscorrelations abowe 0.7 exist mostly at
lower frequencies, 0-7Hz. In addition, at 16-31Hz (bath animals)
and 7-15Hz (one animal) frequency band where primary signal
powers are located, we observe a clear CTX and AN association
whereas CTX-PT isbeing discriminated. These are only meant to
be preliminary results and more animals need to be analyzed.

IV. DISCUSSON

In order to avoid problems associated with
nonstationarities present in the EEG data, we preferred to use
wavelets rather then the periodogram for crosscoherence
estimation of two signals from different brain locations. Asthe



result from AN auto-coherence simulations indicate, WTCCisa
better alternative for estimating the aosscoherence of two non-
stationary signals. There is a distinguishable difference between

Tablelll : Mean ictal period cross
coherencefor two animals
PATHWAY | 04 | 47 | 715 | 1631 | 3263 | 64127
Hz Hz Hz Hz Hz Hz
=[ AN-CTX 063 | 082 [ 077 [ 068 | 032 0.29
Tés AN-HPC 078 | 076 | 0.75 | 057 | 0.41 0.35
=[ AN-PT 063 073 [ 051 [ 051 | 033 0.32
<[ cTX-PT 0.76 | 087 | 049 | 053 | 0.44 0.31
—[ AN-CTX 069 [ 071 [ 056 | 060 | 0.45 0.35
TEU AN _HPC 066 | 0.60 | 058 | 053 | 037 0.33
-Z=| AN-PT 0.84 | 073 | 057 [ 048 | 031 0.32
<[ cTX-PT 072069 | 056 | 052 | 040 0.30

the results from WTCC and FTC where we wrrelated a seizure
recording from AN to itself with addition of uncorrelated noise.
This provides us the motivation to rely on wavelets for
investigation of a possble link between two hio-signals that are
nonstationary under most circumstances.

We have observed a distinguishable aosscoherence
increase of varying amounts at different channels. Low (~0.3)
inter-ictal crosscoherence function values reach 0.9's during
ictal discharge periods in amost all channels. In addition,
constructing a cross-coherencefunction of time has all owed us to
monitor trends of crosscoherencefor different pathways.

Theresultsin Tablelll confirm that the recordingsfrom AN,
CTX, HPC and PT show significant level of lower-band (O-
10Hz) crosscoherencein theictal phases of the seizure activity.
Although we expeded to seehigher crosscorrelation results at
the regions of the spedrum (16-31 Hz) where reatively more
signal energy is concentrated, primary correlations exist at lower
bands (0-10hz). High frequency bands (30Hz and higher)
contained the lowest power and the lowest crosscorrelation
results. Furthermore, when we look at the 7-30Hz frequency
range @ntaining a significant percent of the signal powers we
observe a higher CTX-AN affili ation than CTX-PT.

Furthermore, these results let us propose a distinction
between local and gobal behavior. That is, spatially distinct
brain centers are affiliated with each other solely at lower
frequency bands, while higher-amplitude local behavior is
uncorrelated and located at higher-frequency bands. From one
perspedive, we may suggest that local behavior is triggered by
the global behavior or the global pacemaker signal.  In other
words, we may state the hypothesis that the brain locationswhere
the recordings are made display coherent activity driven by a
global signal propagating via physiologicaly or synaptically
conneded structures in the brain. A large scale wherent neural
network consisting of critical centers of the brain, eg.
hippocampus, anterior thalamic nuclei and cortex, may be
present further indicating that seizure propagation pathways
involve components of the drcuit of Papez [8].

Although we observe a significant crosscoherenceincrease
at the ictal phase of the seizure, the maximum achieved cross
coherence values differ at each pathway. While at some

pathways, e.g., CTX-AN, coherence values reach abowe .9 (data
not shown), at some other pathways, e.g. AN-PT, HPC-PT, the
crosscoherence values fluctuate at lower values. While the
crosscoherence values are significant, the relative magnitude of
them may provide us insight about the functional distance
between two brain locations. In other words, the wherencevalue
may be an indicator of adirea or indired link betweentwo brain
centers whose il eptic activity isanalyzed. Finally, although the
data is not shown, crosscorreation estimation functions (3)
maximize at non-zero delay values supporting the eistence of
propagation phenomenon.

The behavior observed in the EEG recordings analyzed in
this paper lets us make the proposition that the primary
epil eptogenic zone of unknown location acts as a global
discharge initiator. We are also able to make the assuumption that
the generated dscharge signal is carried to cortical and
subcortical brain centers via synaptic connedions where it
produces quasi-periodic activity of diverse signal morphology
depending on the type and the physiological state of the
underlying neural tissue.

[l .CONCLUSION

We have shown that the dosscoherence etimation method
derived from wavelet transform can help us identify brain
eements that are wherently involved in the seizure activity. The
level of coherence ohtained is suggested to be a potentia
indicator of functional distance between two krain centers, e.g.
PT is less dffiliated to CTX than AN. Finaly, we showed
significant ictal period crosscoherence values achieved using
WTCC as a potent method for non-stationary bio-signal analysis.
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